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A power-series solution is presented for the periodic motion of an undamped strongly
non-linear two-degree-of-freedom system excited by harmonic forces. The analysis is
facilitated by transforming the time variable into an harmonically oscillating time. The
frequency of the new time variable is determined by observing the equality between the rate
of change of dynamical energy and the power delivered by the forces. The results show good
agreement with the modi"ed Lindstedt}PoincareH method and the incremental harmonic
balance method.
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1. INTRODUCTION

Classical perturbation techniques such as the Lindstedt}PoincareH method, the
multiple-scales method [1], and the Krylov}Bogoluibov}Mitropolsky technique [2, 3] with
its equivalent Galerkin method have commonly been restricted to the analysis of weakly
non-linear oscillators. For strongly non-linear oscillators with multiple degrees-of-freedom,
such methods are not su$ciently accurate, especially when internal resonance is involved,
as demonstrated by Chen and Cheung [4]. Consequently, some modi"cations to existing
procedures have been proposed. Geer and Andersen [5] used a hybrid
perturbation-Galerkin technique which employs a perturbation expansion to give an
approximate solution that is then used for a subsequent Galerkin analysis. Burton [6, 7]
used the Lindstedt}PoincareH (LP) method and de"ned an expansion parameter to enable an
accurate low order solution to be obtained for oscillators with odd non-linearity. More
recently, Cheung et al. [8] proposed a modi"ed LP method (MLP) by de"ning
a new expansion parameter which remains small even if the original parameter grows
without bound. In a subsequent paper [4], the MLP method was generalized to
multiple-degree-of-freedom systems and applied to a clamped}hinged beam subjected to
harmonic forces and discretized using a two-mode approximation.
sPresently on leave at the Applied Sciences University.

0022-460X/01/140635#08 $35.00/0 ( 2001 Academic Press



636 M. I. QAISI AND ABU-HILAL
In this paper, a power-series solution is presented for the forced two-degree-of-freedom
oscillator treated in reference [4]. The periodic motions of the oscillator are captured by
transforming the time variable into an oscillating time which transforms the governing
di!erential equations into a form solvable by the power-series method.

2. FORMULATION

Consider the vibrations of the harmonically forced two-degree-of-freedom system
described by the equations:

xK#x#Ax3#Bx2y#Cxy2#Dy3"P
1
cos X

f
t, (1)

yK#9y#Ex3#Fx2y#Gxy2#Hy3"P
2
cosX

f
t (2)

subject to the initial conditions

x(0)"x
0
, xR (0)"xR

0
, y (0)"y

0
, yR (0)"yR

0
. (3)

The overdot denotes di!erentiation with respect to time t. This discretized system is a result
of a two-mode approximation of the large amplitude transverse vibration of an undamped
clamped}hinged beam subjected to harmonic forces [4]. The non-linear elastic constants in
equations (1) and (2) have the dimension of force per cubic length and assume the following
values: A"0)2788, B"!0)3111, C"1)116, D"!0)3864, E"B/3, F"C, G"3D, and
H"3)8703. The harmonic forces have amplitudes P

1
, P

2
and a frequency X

f
. Equations (1)

and (2) are coupled non-linear di!erential equations whose solutions are, in general,
non-periodic. Only under certain combinations of problem parameters and initial
conditions does the solution become periodic. Because of the absence of an exact solution,
the conditions under which periodic motion exists remain unknown and can only be studied
approximately. The periodic solutions can be captured by transforming the time variable
t into an harmonically oscillating time q given by

q"sin(ut), (4)

whereby the in"nite time t domain (0)t(R) is reduced to a "nite time q that oscillates
between !1 and 1 at a frequency u to be determined. Upon introducing equation (4) into
equations (1}3), the transformed equations of motion become

u2 (1!q2)xA!u2qx@#x#Ax3#Bx2y#Cxy2#Dy3"P
1
cosX

f
t, (5)

u2(1!q2)yA!u2qy@#9y#Ex3#Fx2y#Gxy2#Hy3"P
2
cosX

f
t (6)

subject to initial conditions

x (0)"x
0
, x@(0)"xR

0
/u, y(0)"y

0
, y@(0)"yR

0
/u. (7)

The prime denotes di!erentiation with respect to time q. The above transformation allows
power-series expansion of x and y in terms of q. According to the theory of di!erential
equations [9], equations (5) and (6) have one ordinary point at q"0 and two regular
singular points at q"$1. It is convenient to expand x and y about the ordinary point as

x (q)"a
1
#a

2
q#a

3
q2#2"

=
+
k/1

a
k
qk~1, (8)

y (q)"b
1
#b

2
q#b

3
q2#2"

=
+
k/1

b
k
qk~1, (9)
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where a
i
and b

i
are constant coe$cients to be determined. Physically, the power-series

solution means that the motion can be approximated by a "nite number of series terms with
the accuracy being ensured by including a su$cient number of such terms. Since q is
periodic, equations (8) and (9) are capable of capturing periodic motion which is
conveniently assumed to start from the maximum displacement position. Under this
condition, all the terms having odd powers of q in equations (8) and (9) vanish and
consequently, the same motion is repeated every half-cycle (positive or negative) of the
oscillating time. It follows that the oscillating time frequency equals one-half the vibration
frequency X, thus

u"X/2. (10)

The non-linear terms in equations (5) and (6) may, by di!erent multiplications of
equations (8) and (9), be expanded also as power series as follows:

x3"
=
+
k/1

c
k
qk~1, x2y"

=
+
k/1

d
k
qk~1, xy2"

=
+
k/1

e
k
qk~1, y3"

=
+
k/1

f
k
qk~1 (11)

in which the constants c
k
, d

k
, e

k
, and f

k
can be computed once the constants a

1
, a

2
,2 , a

k
and

b
1
, b

2
,2 , b

k
are known.

It is also necessary to express the forcing function z"cos(X
f
t) as a power series of q. It

can be veri"ed that z satis"es the linear di!erential equation

(1!q2)zA!qz@#r2z"0, (12)

where r"X
f
/u. It is interesting to note the similarity of the "rst terms of equations (5), (6),

and (12). The solution to equation (12) can similarly be expanded about the ordinary point
q"0 as

z"cos(X
f
t)"q

1
#q

2
q#q

3
q2#2"

=
+
k/1

q
k
qk~1, (13)

where q
i
are constant coe$cients which can be determined by substituting equation (13)

into equation (12) giving

(1!q2)
=
+
k/1

(k!1)(k!2)q
k
qk~3!

=
+
k/1

(k!1)q
k
qk~1#r2

=
+
k/1

q
k
qk~1"0. (14)

By introducing a shift of index in the "rst term so that all terms have the same power,
equation (14) can be rearranged as

=
+
k/1

[k(k#1)q
k`2

!(k!1)2 q
k
#r2q

k
]qk~1"0. (15)

If equation (12) is to be satis"ed exactly, the coe$cient of each power in equation (15)
must identically vanish. This condition introduces the recurrence relation

q
k`2

"C
(k!1)2!r2

k(k#1) Dq
k
, k"1, 2,2 (16)

between the series constants. The "rst two constants q
1

and q
2

are determined by requiring
that equation (13) and its "rst derivative be satis"ed at t"0. This leads to q

1
"1 and

q
2
"0. The remaining constants can be computed from equation (16) for a speci"ed

frequency ratio r. It may be of interest to note that for integer values of r, equation (13)
reduces to the well-known Chebyshev polynomials.
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Having represented the various terms in equations (5) and (6) by power series of q,
equations (8), (9), (11), and (13) can be substituted into equation (5) which, by following the
same steps described above, becomes

=
+
k/1

Mu2[k(k#1)a
k`2

!(k!1)2a
k
]#a

k
#Ac

k
#Bd

k
#Ce

k
#Df

k
!P

1
q
k
Nqk~1"0. (17)

Imposing the requirement of vanishing power coe$cients in equation (17) leads to the
recurrence relation

a
k`2

"

[(k!1)2u2!1]a
k
!Ac

k
!Bd

k
!Ce

k
!Df

k
#P

1
q
k

k (k#1)u2
, k"1, 2,2. (18)

Similar substitution in equation (6) leads to the recurrence relation

b
k`2

"

[(k!1)2u2!9]b
k
!Ec

k
!Fd

k
!Ge

k
!Hf

k
#P

2
q
k

k (k#1)u2
, k"1, 2,2. (19)

The starting values for recurrence relations (18) and (19) are obtained by introducing the
initial conditions, equation (7), into equations (8) and (9) and assuming the motion starts
from the maximum displacement position with zero velocities. This gives

a
1
"x

0
, a

2
"0, b

1
"y

0
, b

2
"0. (20)

The remaining coe$cients a
i

and b
i

depend recursively on these four fundamental
constants and on the oscillating time frequency u in accordance with equations (18) and
(19). It follows that a solution, as expressed by equations (8) and (9), is obtained when the
actual value of u is determined. For that purpose, an auxiliary condition is invoked which
expresses the equality between the rate of change of dynamical energy and the power
delivered by the external forces. This can be written as

d

dt
(¹#< )"P

1
(cosX

f
t)xR #P

2
(cosX

f
t)y5 , (21)

where ¹ and < are the kinetic and potential energies for the system respectively. Equation
(21) is chosen to solve for the oscillating time frequency u and then, from equation (10), the
vibration frequency X is twice that value. Multiplying equation (21) by dt/dq gives

d

dq
(¹#<)"cos X

f
t(P

1
x@#P

2
y@)"R

1
#R

2
q#R

3
q2#2, (22)

whereby equations (8), (9), and (13) are used to express the right-hand side as a single power
series of q. For the system under consideration, the potential energy < is obtained from its
relations with the elastic forces F

x
"L</Lx and F

y
"L</Ly in equations (1) and (2),

respectively, giving

<"1
2
(x2#9y2)#1

4
(Ax4#Hy4)#

B

3
x3y#

C

2
x2y2#Dxy3. (23)

The kinetic energy of the system can be written as

¹"1
2
xR 2#1

2
yR 2"1

2
u2 (1!q2)(x@2#y@2). (24)
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Equation (22) may be integrated with respect to q from q"0 to 1 to give the characteristic
equation

(¹#<)q/1
!(¹#<)q/0

!AR1
#

R
2

2
#

R
3

3
#2B"0, (25)

which may be solved for the actual oscillating time frequency by a frequency search. It is
noted here that the kinetic energy is zero both at the start of motion (q"0) because of the
vanishing initial velocities and at q"1 as given by equation (24). The potential energy is
evaluated at the integration limits by using equations (8) and (9).

3. RESULTS AND DISCUSSION

The forced frequency response of the system governed by equations (1) and (2) was
obtained by using the recurrence relations (18) and (19) in conjunction with the
characteristic equation (25). Figure 1 compares the forced frequency response (x

0
!X

f
)

obtained by the present method for P
1
"1 and P

2
"0 with those produced by available

solutions [4]. It can be seen that the present method is in good agreement with the modi"ed
Linstedt}PoincareH (MLP) method and the incremental harmonic balance (IHB) method.
The accuracy of the classical LP method deteriorates at large amplitudes. The power-series
solution was obtained for a speci"ed forcing frequency X

f
and it was found that each

branch of the response curve is associated with a speci"c value of the frequency ratio r. For
example, branches (1) and (2) in Figure 1 are associated with r"3/2 for which u"(2/3)
X

f
and the vibration frequency X"2u"(4/3)X

f
. On the other hand, branch (3) of the

out-of-phase curve has a value r"2 giving u"0)5X
f

and X"X
f
. Consequently, each

branch was constructed by specifying the oscillating time frequency and the characteristic
Figure 1. Forced frequency response x
0
!X

f
fo P

1
"1, P

2
"0; **, MLP method; } } } } }, LP method;

} ) } )}, IHB; ], present.



Figure 2. Convergence of amplitude x
0

for P
1
"1, P

2
"0; X

f
"2, r"3/2.

TABLE 1

Odd power-series coe.cients (P
1
"1, P

2
"0, X

f
"3, r"3/2, x

0
"5)97)

i"1 i"3 i"5 i"7 i"9

a
i

5)9700 !8)0361 3)0935 !3)2872 2)1183
a
i`10

!2)2849 1)7548 !1)8526 1)5344 !1)5995
a
i`20

1)3814 !1)4287 1)2663 !1)3022 1)1765
a
i`30

!1)2038 1)1017 !1)1246 1)0392 !1)0576
b
i

0)000 2)7581 !3)7406 3)7115 !3)7378
b
i`10

3)6408 !3)6631 3)5946 !3)6043 3)5479
b
i`20

!3)5476 3)4972 !3)4914 3)4469 !3)4347
b
i`30

3)3931 !3)3798 3)3392 !3)3239 3)2866
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equation (25) was solved not for the frequency but for the amplitude x
0
by amplitude search.

The value of y
0

was taken zero.
A convergence test was made for the power-series solution. Figure 2 shows the

convergence of the amplitude x
0

for P
1
"1, P

2
"0, X

f
"2, and r"3/2 as the number of

terms is increased. The results presented in this work were obtained using 40 terms. For
smaller amplitudes, fewer number of terms is required to obtain accurate solutions. Table 1
shows the odd power-series coe$cients for P

1
"1, P

2
"0, X

f
"3, and r"3/2 and

x
0
"5)97 obtained with 40 terms. A progressive decrease in the absolute value of the

coe$cient is seen which characterizes a convergent solution. The even power coe$cients
were all zero because of the vanishing of initial velocities.

Figure 3 shows the forced response y
0
-X

f
for P

1
"1, P

2
"0, and x

0
"0. Both in-phase

and out-of-phase curves are associated with a frequency ratio r"2/3 for which u"(3/2)X
f

and X"3X
f
. Figure 4 shows the second fundamental resonance curves corresponding to

P
1
"0, P

2
"1, and x

0
"0. These curves were obtained with a value r"2.

4. CONCLUSION

A power-series solution has been presented for the large amplitude periodic motion of an
undamped two-degree-of-freedom system subjected to harmonic forces. The periodic
motions were captured by transforming the time variable into an harmonically oscillating



Figure 3. Forced frequency response y
0
!X

f
for P

1
"1, P

2
"0; **, MLP method; } } } }}, LP method;

} ) } )}, IHB; ], present.

Figure 4. Forced frequency response y
0
!X

f
for P

1
"0, P

2
"1: **, MLP method; } } } }}, LP method;

} ) } )}, IHB; ], present.

STRONGLY NON-LINEAR FORCED SYSTEM 641



642 M. I. QAISI AND ABU-HILAL
time. The results show good agreement with the modi"ed Lindstedt}PoincareH method and
the incremental harmonic balance method. A signi"cant advantage of the present technique
is its simple programmability and reduced computational e!ort. The solution can be
applied to undamped strongly non-linear oscillators having multiple degrees-of-freedom
and excited by harmonic forces. Oscillators with viscous damping and subjected to
non-harmonic forces require a separate treatment.
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